
Program Design & Development

Course Details
Course Designator & Number: MADR 3081W
Number of Credits: 4
Language of Instruction: English
Contact Hours: 60
Instructor: Onsite Faculty

Course Description
Principles of programming design/analysis. Concepts in software development. Uses a 
programming project to illustrate key ideas in program design/development, data structures, 
debugging, files, I/O, testing, and coding standards.

This course covers skills, tools, and theory related to becoming a good software developer. The 
course will prepare students to succeed in 4xxx- and 5xxx-level programming intensive 
courses, especially those that are programming-intensive and/or use C/C++. This is a required 
course for CSci majors and a “project” course for non-CSci majors.

Course Objectives
Upon successful completion of the course, students should have experience with the following: 

1. The software engineering process, for example, a general understanding of large 
programming projects and their differences from small ones, as well as different 
software process models, design basics, and testing basics.

2. Reasonable C++ programmer proficiency. In particular, this means being able to use 
C+class basics, inheritance, polymorphism, assertions and exception handling, pointers, 
memory management, and similar advanced topics.

3. UML class diagrams and other fundamental diagrams.
4. A large, mult-iteration programming project.
5. A few software development tools such as version control software, debuggers, etc.



6. Good coding practices such as documentation skills, good program organization, use of 
naming conventions, good class design, etc.

7. Writing in computer science. This writing could take a variety of forms and might 
involve items such as project descriptions, code documentation, and progress reports.

Methodology
CSci 3081W has a number of goals: It is an advanced programming course, it involves 
substantial program design, it uses the C++ programming language, it involves professional 
communication, and it provides an introduction to software processes and tools, etc. In 
particular, a major goal of this class is to provide a first academic experience with 
“programming in the large.” Specifically, the large programming project in 3081W will involve 
most if not all of the following: substantial design, possibly working in a team with other 
programmers, multiple iterations, many files of software code rather than one or two, linking 
with external libraries, code documentation. and use of good programming standards and 
practices.

Course Prerequisites
The prerequisites for 3081W are CSci 2021 (Machine Organization), CSci 2041 (Advanced 
Program Principles), and CS upper division standing. Students should have learned some C as 
well as the basics of pointers and memory management. 3081W will build on this in its 
coverage of C++ and more advanced memory management techniques. From 2041, students 
should have a general knowledge of programming techniques and languages, which will be 
helpful when doing the programming in 3081W. 

CSci 3081W is a prerequisite for CSci 4271W, 5123, and 5607. However, even though it is not 
a formal prerequisite, the department suggests taking 3081W before or simultaneously with 
4061, since the C/C++ programming in 3081W might be useful in 4061. Moreover, the 
department suggests taking 3081W before most electives since the programming skills 
learned in 3081W will likely be useful in elective classes that involve significant amounts of 
programming.

Here are the classes for which 3081W is a formal prerequisite:

● CSci 4271W, Development of Secure Software Systems. The C/C++, advanced 
programming, and writing skills learned in 3081W will be useful in 4271W.

● CSci 5123, Recommender Systems. The programming skills learned in 3081W, 
especially those that involve working with large systems, will be useful in 5123.

● CSci 5607, Fundamentals of Computer Graphics I. The C/C++ and advanced 
programming skills learned in 3081W will be useful in 5607.

 Students should take CSci 3081W before taking most electives. For most students this means 
taking 3081W in their junior, not their senior, year. CSci 3081W is restricted to CS majors. 



Other students who wish to take 3081W for some valid reason should contact a department 
adviser, not the course teacher.

Required Reading / Materials

Class Format
CSci 3081W is a four-credit course, with three hours/week in lecture, plus a one-hour lab once 
per week. Labs are usually used for students to work on C++ practice problems, or to work on 
larger programming projects in a structured environment.

Possible Text(s)
● Code Complete, by Steve McConnell, published by Microsoft Press. 
● UML Distilled: A Brief Guide to the Standard Object Modeling Language, by Martin 

Fowler, published by Addison-Wesley. 

Communication Skills
Communication skills play an important part of large program design and development, and so 
they play an important role in the course. CSci 3081W is a writing-intensive class, and must 
therefore fulfill the writing intensive criteria: writing must play an integral role in the course, a 
good amount of the coursework must involve some type of writing (although writing can be 
widely interpreted to cover items such as UML diagrams and code comments), students should 
not be able to pass the course without meeting a minimal standard of writing proficiency on 
the coursework, and the course must involve some relevant writing instruction.

The writing work in 3081W can take a number of forms, including design documents, 
high-level system descriptions, project progress reports, code summaries and documentation, 
and short answer problem solutions. Teachers are free to choose whichever types of writing fit 
well into the course.

Writing Intensive Guidelines
Design and analysis of computer programs concerns all aspects of software development 
ranging from capturing the business case and technical rationale to detailed documentation of 
what the software does, how it shall be used, and how it is constructed. Excellent writing skills 
are a necessity to make larger software development projects successful. In this 
software-engineering course, the students must learn the critical skills of how to adequately 
specify and document software projects and software artifacts.

Assignments for this course will be reviewed for technical content, clarity, and quality of 
writing. These include, but are not limited to:

● Requirements Document: This document provides the rationale for, goals with, and 
specific requirements on a new software system. This is a written document where 
clarity is imperative. 



● Users Manual: The users manual for software systems is often a very weak point. This 
document will capture how the software system will be used in an easy to understand 
and clear form. 

Draft versions of these documents are required and will be critiqued by the instructor.



Grading

Grading Rubric
Letter 
Grade

Score or 
Percentage Description

A 93–100 Achievement that is outstanding relative to the level necessary to 
meet course requirements.

A- 90–92

Achievement that is significantly above the level necessary to 
meet course requirements.B+ 87–89

B 83–86

B- 80–82

Achievement that meets the course requirements in every respect.C+ 77–79

C 73–76

C- 70–72

Achievement that is worthy of credit even though it fails to fully 
meet the course requirements.D+ 67–69

D 60–66

F 0–59 Represents failure (or no credit) and signifies that the work was 
either (1) completed but at a level of achievement that is not 
worthy of credit or (2) was not completed and there was no 
agreement between the instructor and the student that the 
student would be awarded an I.



Project Grading
A large part of the grade (tentatively 40%) will be based on the project in this course. The 
content, format, and clarity of the various documents produced as part of this project 
determines the project grade. Students have an opportunity to receive feedback and later 
revise their work.

User Manual Project
In this course, students will create a User Manual. This document should be a self-contained 
description of how to use a system, and should be a polished, professional piece of technical 
prose that a software company is proud to have accompany one of their products.

The document should have a structure that is evident to someone who is reading it straight 
through and looking for a particular topic or fact. A table of contents is required, and the 
organization that it reflects should be considered carefully. An Index and Appendices might 
also be helpful.

The document should be completely self-explanatory. Do not assume the readers have 
functional specifications. Students’ previous documents may be edited and revised when 
creating this User Manual.

The following list of topics must be covered, but the order and style in which these topics are 
presented may be left to the students’ discretion:

● Introduction: a concise statement of what the program does, possibly including 
motivation and philosophy.

● How to use your system: an overall description of the style of user interaction, device 
constraints, and any arbitrary design choices made that the user ought to know about.

● Detailed system operation: an organized list of all user commands and when they are 
appropriate; some examples might be helpful. A section for novices and experts are 
also possibilities.

● Error recognition and handling: what to expect and what to do when it happens. 
● A list of known features [actions that some would call bugs!] and deficiencies.

Required Lectures and Presentations
There will be two general lectures on technical writing and technical presentations in this 
course.



Course Content
Unit 1

● Course Introduction, C++ Basics

Unit 2
● C++ Classes, UML Diagrams, Professional Writing in CS

Unit 3
● Programs and Class Design, Makefiles, Pointers and Polymorphism in C++

Unit 4
● Project Iteration 1, More Pointers, Code Style Guidelines

Unit 5
● Constructors and Destructors, Parameter Passing, Introduction to Design Patterns

Unit 6
● Miscellaneous Topics, Project Issues

Unit 7
● Software Development Methodologies, Project Iteration 2

Unit 8
● Copy Constructors and Overloaded Assignment Operators, Code Style, Midterm

Unit 9
● Code Style, More Design Patterns

Unit 10
● Project Reports, Testing Strategies, Debugging



Unit 11
● C++ Templates and the Standard Template Library, Project Iteration 3

Unit 12

● More Design Patterns, Project Documentation, Refactoring

Unit 13
● More Testing

Unit 14
● Advanced UML, More About Design, Class Retrospective

Policies

Attendance Policy
Students are expected to be on time and attend all classes while abroad. Many instructors 
assess both attendance and participation when assigning a final course grade. Attendance 
alone does not guarantee a positive participation grade; the student should be prepared for 
class and engage in class discussion. See the on-site syllabus for specific class requirements.

University of Minnesota Policies & Procedures
Academic integrity is essential to a positive teaching and learning environment. All students 
enrolled in University courses are expected to complete coursework responsibilities with 
fairness and honesty. Failure to do so by seeking unfair advantage over others or 
misrepresenting someone else’s work as your own can result in disciplinary action. The 
University Student Conduct Code defines scholastic dishonesty as follows:

Scholastic Dishonesty
Scholastic dishonesty means plagiarizing; cheating on assignments or examinations; engaging 
in unauthorized collaboration on academic work; taking, acquiring, or using test materials 
without faculty permission; submitting false or incomplete records of academic achievement; 
acting alone or in cooperation with another to falsify records or to obtain dishonestly grades, 



honors, awards, or professional endorsement; altering forging, or misusing a University 
academic record; or fabricating or falsifying data, research procedures, or data analysis.

Within this course, a student responsible for scholastic dishonesty can be assigned a penalty 
up to and including an “F” or “N” for the course. If you have any questions regarding the 
expectations for a specific assignment or exam, ask.

Student Conduct
The University of Minnesota has specific policies concerning student conduct. This information 
can be found on the Learning Abroad Center website.

https://umabroad.umn.edu/students/policies/rightsresponsibilities

